

Calibrations Left Dock Feature

Calibrations Left Dock Feature Estimating Remaining Calibrations in a Gas Bottle

This guide outlines the methodology used to estimate the number of remaining calibrations in a gas bottle. It is designed for technicians and engineers who need accurate gas usage monitoring for calibration processes. The system ensures efficient gas usage and prevents unexpected shortages.

1. Calculation of Remaining Calibrations

1.1 Determining the Remaining Gas Volume

The system calculates the remaining gas based on the following parameters:

- Initial Bottle Pressure The pressure of a full gas bottle (e.g., 1000 psi).
- **Bottle Capacity** The volume of the bottle when uncompressed (e.g., 116 liters). Note that smaller, compressed values (e.g., 1.6L) are not applicable.
- **Current Bottle Pressure** The real-time pressure reading of the gas bottle.
- Calibration Time per Gas Type The duration required for calibration with different gases.

Using these inputs, the system computes the remaining gas volume.

1.2 Gas Consumption per Calibration

Different gases require different calibration durations, impacting gas consumption rates. The following table details the calibration times per gas type:

Gas Type	Current Duration (sec)	Future Update (sec)
Fresh Air	60	60
SO ₂	120	120
H ₂	120	TBD
CH₄S	120	TBD
NH₃	250	180
HCN	150	TBD
ETO	90	255
Other Gases	90	90

The system then calculates the gas consumed per calibration using the following formula:

$$\mathrm{Liters~Per~Calibration} = rac{\mathrm{Liters~Per~Minute}}{\left(rac{\mathrm{Calibration~Duration~(sec)}}{60}
ight)}$$

1.3 Computing Remaining Calibrations

To determine the number of calibrations left, the system applies the following calculation:

 $Calibrations Left = \frac{Liters Left}{_{Liters Per Minute}}$

(Calibration Duration (sec)/60)

2. Displaying Number of Calibrations Left

The system presents the remaining calibrations in a user-friendly manner:

- The count is rounded down (e.g., 16.8 and 16.2 both display as 16).
- If between 6 and 10 calibrations remain, the system displays: "Cals left <10"
- If 5 or fewer remain, it displays: "Cals left < 5"
- Otherwise, it shows the approximate number, such as "Cals left ≈16"

3. Data Collection and Sensor Adjustments

To ensure accuracy, the system:

- Monitors pressure for four seconds and records the lowest reading.
- Adjusts for common sensor errors by subtracting **38 psi** (e.g., some sensors incorrectly register **38 psi** for an empty bottle).
- · Plans future updates to enhance pressure reading accuracy.

4. System Update Triggers

The system refreshes the gas bottle's pressure reading under the following conditions:

- Manual bottle information update.
- Connection or removal of a pressure sensor (applicable for software version 1.14 and later).
- Modification of dock sensor settings.
- Automatic refresh every five minutes.
- Note: Automatic updates after calibrations or bump tests are under development.

5. Why Continuous Updates are avoided

Constant pressure updates can drain battery life and cause unstable display readings. To optimize performance, the system updates data only when necessary.